The structure is held together by van der Waals interactions and hydrogen bonds; short intermolecular contacts Cl3…C8, Cl4…C22 and O5…O2 correspond to the sum of van der Waals radii of the atoms involved (Huheey, 1983).

References

ADDISON, A. W., RAO, T. N., REEDIJK, J., VAN RIJN, J. & VERSCHOOR, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–56.

ANDERSON, D. N. & WILLETT, R. D. (1971). Inorg. Chim. Acta, 5, 175-178.

- Arriortua, M. I., Mesa, J. L., Rojo, T., Debaerdemaeker, T., Beltran-Porter, D., Stratemeier, H. & Reinen, D. (1988). *Inorg. Chem.* 27, 2976–2981.
- BARAN, P., KOMAN, M., VALIGURA, D. & MROZINSKI, J. (1991). J. Chem. Soc. Dalton Trans. pp. 1385-1390.
- HARLOW, R. L., WELLS, W. J., WATT, G. W. & SIMONSEN, S. H. (1974). Inorg. Chem. 13, 2106–2111.
- HUHEEY, J. E. (1983). In *Inorganic Chemistry*, 3rd edition. New York: Harper & Row.
- PRESTON, H. S. & KENNARD, C. H. L. (1969). J. Chem. Soc. A, pp. 2955–2958.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1991). C47, 2531-2535

A Comparison of Phosphido-Bridged Triangular Rhenium Carbonyl Derivatives with 44, 46 and 48 Valence Electron Counts

BY HANS-JÜRGEN HAUPT, ULRICH FLÖRKE AND HARALD SCHNIEDER

Anorganische und Analytische Chemie, Universität-GH-Paderborn, D-4790 Paderborn, Warburger Straße 100, Germany

(Received 4 February 1991; accepted 11 July 1991)

Abstract. Hexacarbonyl-tris(μ -cyclohexylphosphido)-bis(µ₃-hydrido)-triangulo-trirhenium(3Re-*Re*), C₄₂H₆₈O₆P₃Re₃, Re₃(CO)₆(μ_3 -H)₂[μ -P(C₆H₁₁)₂]₃ (I), $M_r = 1320.5$, monoclinic, $P2_1/n$, a = 10.361 (2), b = 19.729 (4), c = 23.254 (5) Å, $\beta = 92.85$ (2)°, U =4747.5 Å³, Z = 4, $D_x = 1.847$ Mg m⁻³, λ (Mo K α) = 298 (1) K. R = 0.0688 for 4169 unique reflections. The molecular structure has a central Re₃ ring which has three edge-bridging μ -PCy₂ groups (Cy = cyclohexyl) and two μ_3 -H ligands. The mean value of the metal-metal bonds is 2.756 (2) Å, the corresponding angles 60.0° . Hexacarbonyl-tris(μ -diphenylmethylphosphido)- $(\mu_3$ -hydrido)-triangulo-rhenium(3Re- $C_{27}H_{25}O_6P_4Re_3$ $Re_{3}(CO)_{6}(\mu_{3}-H)(\mu_{3}-P)[\mu$ -*Re*), $P(C_6H_5)(CH_3)|_3$ (II), $M_r = 1129.0$, monoclinic, $P2_1/a$, a = 15.477 (6), b = 12.553 (4), c = 18.109 (6) Å, $\beta =$ $U = 3208.6 \text{ Å}^3$, Z = 4, $D_{\rm r} =$ $114.22(2)^{\circ}$, 2.337 Mg m⁻³, λ (Mo K α) = 0.71073 Å, 11.68 mm⁻¹, F(000) = 2084, T = 296 (1) K, $\mu =$ R =0.0741 for 3008 unique reflections. The central Re₃ ring is edge bridged by three μ -PPhMe groups (Ph = phenyl, Me = methyl) and capped by one μ_3 -H and one μ_3 -P ligand. The mean Re—Re bond distance is 2.804(2) Å and the enclosed angles are 58.8, 60.5 and 60.7° . Hexacarbonyl-tris(μ -dicyclohexylphosphido)- $(\mu_3$ -hydrido)- $(\mu_3$ -phosphino)-triangulorhenium(3*Re*-*Re*), $C_{42}H_{67}O_6P_4Re_3$, $Re_3(CO)_6(\mu_3-$ H) $(\mu_3 - P)[\mu - P(C_6 H_{11})_2]_3$ (III), $M_r = 1351.5$, monoclinic, $P2_1/n$, a = 10.083 (2), b = 21.220 (6), c =

22.441 (7) Å, $\beta = 100.43$ (2)°, U = 4722.2 Å³, Z = 4, $D_x = 1.901 \text{ Mg m}^{-3}, \lambda (Mo K\alpha) = 0.71073 \text{ Å}, \mu =$ 7.95 mm^{-1} , F(000) = 2612, T = 298 (1) K, R =0.0645 for 4766 unique reflections. The central molecular fragment is an Re₃ ring capped by one μ_3 -H and one μ_3 -P ligand, the Re—Re bonds are bridged by three μ -PCy₂ groups. The mean Re—Re bond distance is 2.815(1) Å and the enclosed angles are 59.6, 60.1 and 60.3°. Nonacarbonyl-tris(μ dicyclohexylphosphido)-triangulo-rhenium(3Re-Re), $C_{45}H_{66}O_9P_3Re_3$, $Re_3(CO)_9[\mu - P(C_6H_{11})_2]_3$ (IV), $M_r =$ 1402.5, orthorhombic, *Pbcn*, a = 11.790 (3), b =24.005 (8), c = 17.833 (4) Å, U = 5046.8 Å³, Z = 4, $D_x = 1.846 \text{ Mg m}^{-3}, \lambda (\text{Mo } K\alpha) = 0.71073 \text{ Å}, \mu =$ 7.42 mm^{-1} , F(000) = 2712, T = 296 (1) K, R =0.0595 for 2869 unique intensities. The central Re₃ ring is edge bridged by three μ -PCy₂ groups, each Re atom has three CO ligands. The mean Re-Re bond distance is 2.913 (1) Å and the angles are $59.9 (\times 2)$ and 60.3° .

Introduction. As a requirement of the so-called effective atomic number (EAN) rule, Re atoms need, in a three-membered ring of three σ Re—Re bonds, 48 valence electrons (VE) (Lauher, 1978). Furthermore, this means that such a rhenium ring is unifold unsaturated with 46 and twofold unsaturated with 44 VE. The last VE count for a three-membered transition metal ring was obtained for the first time in Re₃(CO)₆(μ_3 -H)₂(μ -PPh₂)₃ (Haupt, Flörke & Balsaa,

© 1991 International Union of Crystallography

1988*a*) which shows a π -delocalization effect along the Re—Re edges. To study the complex dependence of bridged Re—Re bonds in Re₃ triangles on Ph vs Cy (cyclohexyl) substitution in 44 VE clusters, a transfer from 44 into 46 VE clusters and finally, into a 48 VE cluster was undertaken and the following substances identified by structural determinations: Re₃(CO)₆(μ_3 -H)₂(μ -PCy₂)₃ (I), Re₃(CO)₆(μ_3 -H)(μ_3 -P)(μ -PPhMe)₃ (II), Re₃(CO)₆(μ_3 -H)(μ_3 -P)(μ -PCy₂)₃ (III) and Re₃(CO)₉(μ -PCy₂)₃ (IV). Of further interest are their cyclovoltammetric and catalytic properties for hydrogenation (Haupt, Balsaa & Flörke, 1988*b*).

Experimental. Yellow crystals of Re₃(CO)₆(μ_3 -H)₂(μ -PCy₂)₃ (I) and yellow crystals of Re₃(CO)₆(μ_3 -H)(μ_3 -P)(μ -PCy₂)₃ (III) were prepared by hydrogenation of Re₂(CO)₈(μ -H)(μ -PCy₂) in xylene solution at 473 K and 2 × 10⁵ Pa hydrogen pressure for 50 h. Orange-red crystals of Re₃(CO)₆(μ_3 -H)(μ_3 -P)(μ -PPhMe)₃ (II) were prepared by hydrogenation of Re₂(CO)₈(μ -PPhMe)₂ in xylene solution at 503 K and 2 × 10⁵ Pa hydrogen pressure for 50 h. Red crystals of Re₃(CO)₉(μ -PCy₂)₃ (IV) were prepared in xylene solution by reaction of (I) and Re₂(CO)₁₀ at 543 K for 2 h in a glass tube.

Crystal size of (I) $0.03 \times 0.14 \times 0.43$ mm, Nicolet R3m/V diffractometer, graphite-monochromated Mo $K\alpha$ radiation, lattice parameters refined from 25 reflections $10 \le 2\theta \le 25^\circ$, $\omega - 2\theta$ scan, scan speed 2.6° min⁻¹, 10 491 reflections collected $3 \le 2\theta \le 54^{\circ}$, $-13 \le h \le 13, 0 \le k \le 25, 0 \le l \le 29$, three standards recorded every 400 reflections, 5% decrease in intensities scaled on standards, Lp correction, empirical absorption correction via ψ scans, min./max. transmission 0.500/0.862, after merging ($R_{int} = 0.066$) 9941 unique reflections, 4169 considered observed F $> 5\sigma(F)$. Structure solved by direct and Fourier synthesis methods, full-matrix least-squares refinement based on F (247 parameters), Re and P refined anisotropically, H atoms fixed in idealized positions with common isotropic displacement parameter, μ_3 -H positions not located from ΔF maps but ascertained from ¹H NMR measurements, $(\Delta/\sigma)_{\text{max}} = 0.001$, max. height in final ΔF map $1.1 \text{ e } \text{A}^{-3}$ near Re position, refinement converged to $R = 0.069, wR = 0.052, 1/w = \sigma^2(F) + 0.0001F^2, S =$ 1.588. Complex neutral-atom scattering factors corrected for anomalous dispersion and all calculations from and with SHELXTL-Plus (Sheldrick, 1988).

Crystal size of (II) $0.04 \times 0.14 \times 0.35$ mm, lattice parameters refined from 32 reflections $10 \le 2\theta \le 32^\circ$, $\omega - 2\theta$ scan, 7226 reflections collected $3 \le 2\theta \le 53^\circ$, $-19 \le h \le 19$, $0 \le k \le 15$, $0 \le l \le 22$, three standards every 400, only random deviations, corrections as above, min./max. transmission 0.225/0.740, after merging ($R_{int} = 0.052$) 6684 unique reflections, 3008 considered observed $F > 4\sigma(F)$. Structure solution and refinement as above, 235 parameters, all but H atoms and phenyl C refined anisotropically, phenyl groups treated as rigid bodies (C—C 1·395, C—H 0·96 Å), H atoms and μ_3 -H position as above, $(\Delta/\sigma)_{\text{max}} = 0.001$, max. heights in final ΔF map 1·4 e Å⁻³ near Re position, refinement converged to R = 0.074, wR = 0.052, $1/w = \sigma^2(F) + 0.001F^2$, S = 1.558. Further details of the structural analysis as above.

Crystal size of (III) $0.05 \times 0.18 \times 0.31$ mm, lattice parameters refined from 25 reflections $10 \le 2\theta \le 31^\circ$, ω -2 θ scan, 8234 reflections collected $3 \le 2\theta \le 50^\circ$. $-12 \le h \le 12, 0 \le k \le 25, 0 \le l \le 26$, three standards every 400, 5% decrease in intensities scaled on standards, corrections as above, min./max. transmission 0.241/0.766, after merging ($R_{int} = 0.0355$) 7788 unique reflections, 4766 considered observed F > $4\sigma(F)$. Structure solution and refinement as above, 316 parameters, Re, P, and carbonyl groups refined anisotropically, H atoms and μ_3 -H position as above, $(\Delta/\sigma)_{\rm max} = 0.005$, max. height in final ΔF map 1.6 e Å⁻³ near Re position, refinement converged to $R = 0.064, wR = 0.053, 1/w = \sigma^2(F) + 0.0004F^2, S =$ 1.397. Further details of the structural analysis as above.

Crystal size of (IV) $0.12 \times 0.38 \times 0.40$ mm, lattice parameters refined from 29 reflections $13 \le 2\theta \le 33^\circ$, $\omega - 2\theta$ scan, 6019 reflections collected $3 \le 2\theta \le 55^\circ$, $0 \le h \le 15$, $0 \le k \le 31$, $0 \le l \le 23$, three standards every 400, only random deviations, corrections as above, min./max. transmission 0.370/0.756, 2869 unique observed reflections $F > 4\sigma(F)$. Structure solution and refinement as above, 272 parameters, all but H atoms refined anisotropically, H atoms as above, O(4) slightly disordered around twofold axis, small disorder of O(3) not resolved, $(\Delta/\sigma)_{max} =$ 0.001, max. height in final ΔF map 1.1 e Å⁻³ near Re position, refinement converged to R = 0.060, wR =0.048, $1/w = \sigma^2(F) + 0.0003F^2$, S = 1.430. Further details of the structural analysis as above.

Discussion. The structures of (I)-(IV) are shown in Figs. 1–4. Selected atomic parameters of (I)-(IV) are given in Table 1 and selected bond lengths and angles in Table 2.*

The diamagnetic rhenium clusters (I)–(IV) have a phosphido-bridged planar $\text{Re}_3(\mu-P)_3$ core as a central molecular fragment. This edge-bridged triangular arrangement of Re atoms is capped by two triply bridging hydrides in (I) and one triply bridging

^{*} Lists of structure factors, anisotropic temperature factors, complete list of atomic coordinates, bond lengths and angles, and H-atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54252 (132 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

hydrido and one μ_3 -phosphorus atom in (II)–(III). In (IV) the core is unbridged. The non-crystallographic local geometry of the coordinated six or the five non-metal ligand atoms at each Re atom is of idealized C_{2v} symmetry in (I) or (IV). For the six ligand atoms in (II) and (III), this geometry is of idealized C_s symmetry. In general, the coordination sphere of an Re atom with six ligand atoms is that of a distorted octahedron in (I)–(III). If the organic groups at the μ -P atoms are considered, a lack of symmetry (C_1) in (I)–(IV) appears. (III) can form six geometrical isomers of which the one with two Ph groups and one Me residue near to the μ_3 -P atom, and the remaining Ph and Me groups on the μ_3 -H side of Re ring, was obtained

The changes of multiply-bridged Re—Re bond lengths are of special interest. They stand in connection with different substitution patterns for a distinct VE number and allow a study of the effectiveness of different VE counts. The multiple-bond character of

a 44 VE Re₃ ring is characterized by the average Re—Re bond length by 2.730 (1) Å in Re₃(CO)₆(μ_3 -H)₂(μ -PPh₂)₃ (Haupt, Flörke & Balsaa, 1988a). The exchange of Ph vs Cy groups in (I) enlarges the Re—Re bond lengths by about 0.026(2) Å. The observed bond length increase comprises not only the Re-Re but also the Re-P bonds in the common Re₃(μ -P)₃ plane with a π delocalization effect and is originated by the electronic properties of Ph and Cy residues. On going from (I) to (II), exchanging μ_3 -H for μ -P leads to an average Re—Re bond lengthening of 0.053(1) Å in the 46 VE cluster (II). Such an Re-Re bond elongation increases in the following sequence from 44 VE in $Re_{3}(CO)_{6}(\mu_{3}-H)_{2}(\mu-PPh_{2})_{3}$ [av. Re—Re 2.730 (1) Å] to 46 VE clusters. Such couples have values of 0.074 (2) with (III), of 0.078 (1) with $\text{Re}_3(\text{CO})_6(\mu_3 - \mu_5)$ H)(μ_3 -Cl)(μ -PPh₂)₃ (Haupt, Woyciechowski & Flörke, 1991) and of 0.096 (1) Å with $\text{Re}_3(\text{CO})_5(\mu_3 - \mu_3)$ H)(μ -I)(μ -PPh₂)₃(PPh₃) (Flörke & Haupt, 1990).

Fig. 1. General view of the molecule (I) with atom numbering.

Fig. 3. General view of the molecule (III) with atom numbering.

Fig. 2. General view of the molecule (II) with atom numbering.

Fig. 4. General view of the molecule (IV) with atom numbering.

Table 1. Selected atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters Table 2. Selected bond lengths (Å) and angles (°)

ana	equivalent	$(\dot{A}^2 \times 1)$	aispiacement pa 10 ³)	irameters	$(\mathbf{I}) = \mathbf{P}e(1) - \mathbf{P}e(2)$	2,757 (1)	Pe(1)Pe(3)	2,756 (1)	
	is defined as	and third of the	the entropy of the entropy	onalizad	Re(1) - P(1) Re(1) - P(1)	2·383 (6)	Re(1) - P(2)	2.388 (7)	
U_{eq} is defined as one third of the trace of the orthogonalized U_{u} tensor					Re(2) - Re(3) Re(2) - P(3)	2·753 (1) 2·377 (7)	Re(2) - P(1) Re(3) - P(2)	2·387 (6) 2·386 (6)	
			_		Re(3)—P(3)	2.387 (7)			
(I)	x	У	Z	U _{eq}	P(1) - Re(1) - P(2)	169.2 (2)	Re(2)—Re(1)—Re	(3) 59.9 (1)	
Re(1)	3776 (1)	6957 (1)	-62(1)	30 (1)	P(1)—Re(2)—P(3)	169.0 (2)	Re(1)—Re(2)—Re	(3) 60.0 (1)	
Re(2) Re(3)	4466 (1) 3421 (1)	8298 (1) 7597 (1)	-176 (1) -1111 (1)	32 (1) 33 (1)	P(2) - Re(3) - P(3) Re(1) - P(2) - Re(3)	167-9 (2) 70-5 (2)	$Re(1) \rightarrow Re(3) \rightarrow Re(2)$ $Re(1) \rightarrow P(1) \rightarrow Re(2)$	(2) 60.0(1) 2) 70.6(2)	
P(1)	4704 (6)	7650 (3)	689 (3)	30 (4)			Re(2)—P(3)—Re(3	3) 70.6 (2)	
P(2)	2814 (6)	6458 (3) 8775 (3)	-914 (3)	37 (4)					
C(1)	2592 (29)	6594 (15)	432 (14)	41 (4) 73 (9)	(II)				
O(1)	1857 (18)	6363 (9)	741 (9)	73 (6)	Re(1) - Re(2) Re(1) - P(1)	2·819 (2) 2·385 (10)	Re(1) - Re(3) Re(1) - P(3)	2·823 (2) 2·400 (9)	
C(2)	4820 (25)	6213 (13) 5758 (9)	143 (12)	52 (8) 72 (6)	Re(1) - P(4)	2.585 (4)	Re(2) - Re(3)	2.770 (2)	
C(3)	3927 (24)	9077 (13)	238 (12)	50 (7)	Re(2) - P(1)	2.377 (7)	Re(2) - P(2)	2·403 (7)	
O(3)	3614 (17)	9564 (9)	464 (8)	66 (6)	Re(3) - P(3)	2·388 (3) 2·386 (7)	Re(3) - P(2) Re(3) - P(4)	2.386 (7) 2.610 (6)	
O(4)	7240 (18)	8853 (9)	-114 (8)	71 (6)	., .,	.,	., .,	.,	
C(5)	4222 (26)	7387 (13)	- 1773 (13)	55 (8)	Re(2)—Re(1)—Re(1	3) 58.8 (1)	P(1) - Re(1) - P(3)	165-4 (2)	
C(5)	4817 (19) 1934 (28)	7257 (9) 7740 (13)	-2188(10) -1595(13)	82 (7) 64 (9)	P(1) - Re(1) - P(4) Re(1) - Re(2) - Re(2)	85·0 (2) 3) 60·7 (1)	P(3) - Re(1) - P(4) P(1) - Re(2) - P(2)	83·2 (2)	
O(6)	975 (20)	7848 (9)	- 1891 (9)	83 (7)	P(1) - Re(2) - P(4)	85.1 (2)	P(2) - Re(2) - P(4)	90.3 (2)	
(III)					Re(1) - Re(3) - Re(3)	2) 60.5 (1)	P(2) - Re(3) - P(3)	169.4 (3)	
Re(1)	4187 (1)	998 (1)	3156 (1)	42 (1)	Re(1) - P(1) - Re(2)	72.6 (3)	Re(2) - P(2) - Re(2)	3) 70.7 (2)	
Re(2)	3601 (1)	-41(1)	1648 (1)	43 (1)	Re(1)—P(3)—Re(3)	72.3 (2)	Re(1)—P(4)—Re(2	2) 66-0 (1)	
P(1)	4195 (4)	- 876 (8)	2940 (4)	42 (1) 48 (5)	Re(1) - P(4) - Re(3)	03.8(1)	Re(2) - P(4) - Re(.)	3) 04·4 (1)	
P(2)	3128 (4)	1125 (8)	496 (3)	49 (4)	(III)				
P(3) P(4)	2436 (4)	2884 (7) 906 (6)	3013 (4) 2128 (3)	54 (5) 37 (4)	Re(1)—Re(2)	2.824 (1)	Re(1)-Re(3)	2.819 (1)	
C(1)	5489 (19)	1082 (25)	3754 (11)	25 (16)	Re(1) - P(1)	2.427 (5)	Re(1) - P(3)	2.406 (5)	
O(1) C(2)	6325 (12) 4021 (18)	1069 (20) 894 (28)	4064 (10) 4151 (16)	72 (14) 74 (22)	Re(2) - P(1)	2.400 (5)	Re(2) - Re(3) Re(2) - P(2)	2.408 (5)	
O(2)	3870 (14)	814 (22)	4714 (11)	99 (19)	Re(2) - P(4)	2.612 (5)	Re(3) - P(2)	2.400 (5)	
O(3)	2737 (19) 2106 (15)	-1014(32) -1600(17)	994 (15) 556 (13)	65 (22) 80 (17)	Re(3) - P(3)	2.405 (5)	Re(3) = P(4)	2.022 (4)	
C(4)	4589 (19)	- 590 (23)	1431 (15)	58 (21)	Re(2)-Re(1)-Re(1)	3) 59.5 (1)	P(1) - Re(1) - P(3)	167-4 (2)	
O(4) C(5)	5208 (13) 4406 (19)	- 895 (21) 2903 (22)	1313 (12) 1467 (15)	102 (17)	P(1) - Re(1) - P(4)	85.8 (2)	P(3) - Re(1) - P(4)	86-4 (2)	
O(5)	4972 (13)	3359 (17)	1302 (12)	83 (16)	P(1) - Re(2) - P(4)	85.6 (2)	P(1) - Re(2) - P(2) P(2) - Re(2) - P(4)	87.9 (2)	
C(6) O(6)	2478 (21)	3163 (28)	1138 (16)	66 (24) 107 (21)	Re(1) - Re(3) - Re(3)	2) 60.3 (1)	P(2)—Re(3)—P(3)	168-9 (2)	
(0)	1000 (10)	5725 (21)	017 (10)		P(2) = Re(3) = P(4) Re(1) = P(1) = Re(2)	71.6(1)	P(3) - Re(3) - P(4) Re(2) - P(2) - Re(2)	3) 71·3 (1)	
(111) Re(1)	489 (1)	2168 (1)	7984 (1)	27 (1)	Re(1) - P(3) - Re(3)	71.8 (2)	Re(1)—P(4)—Re(2)	2) 65-9 (1)	
Re(2)	28 (1)	1919 (1)	6728 (1)	25 (1)	Re(1) - P(4) - Re(3)	65.7 (1)	Re(2) - P(4) - Re(.)	3) 64.8 (1)	
Re(3) P(1)	-1015(1) 1276(5)	1103 (1)	7510 (1)	27 (1)	(IV)				
P(2)	-1297 (5)	989 (2)	6431 (2)	23 (3)	Re(1)—Re(1a)	2.920 (1)	Re(1)-Re(2)	2.909 (1)	
P(3)	- 500 (5)	1401 (2)	8561 (2)	31 (3)	Re(1) - P(1)	2.412 (4)	Re(1)—P(2)	2.409 (4)	
C(1)	- 529 (19)	2830 (9)	8208 (10)	38 (13)	Re(2)- $F(1)$	2.408 (4)			
O(1)	- 1246 (14)	3230 (7)	8316 (8)	59 (11)	P(1) - Re(1) - P(2)	165-4 (1)	Re(1a) - Re(1) - R	.e(2) 59.9 (1)	
O(2)	2797 (15)	2387 (9) 2526 (8)	8627 (10) 9011 (8)	38 (13) 65 (12)	P(1) - Re(2) - P(1a)	166-1 (1)	Re(1)—Re(2)—Re	(1a) 60·3 (1)	
C(3)	966 (18)	1788 (9)	6074 (10)	32 (13)	Re(1) - P(2) - Re(1)	i) /4·6 (2)	Re(1) - P(1) - Re(2)	2) 74-3 (1)	
O(3) C(4)	-1191(22)	1684 (7) 2453 (10)	5660 (7) 6282 (11)	61 (12) 49 (15)					
O(4)	-2033 (16)	2774 (7)	5964 (8)	64 (12)					
O(5)	-2865(21) -4012(15)	1198 (8)	7474 (9) 7455 (8)	34 (13) 53 (11)	The lack	of an unsatura	ated Re—Re	bond charac-	
C(6)	-1114 (22)	211 (9)	7651 (11)	45 (15)	ter in the F	Re ₃ triangles gi	ves Re—Re	bond elonga-	
U(6)	- 1199 (20)	- 307 (7)	///4 (10)	90 (17)	tions of 0.	160 (2) betwe	en (I) and	(IV) and of	
(IV)	(00 (1))		1701 (1)		0·184 (4) Å	in Re ₃ (C	$O_{6}(\mu_{3}-H)_{2}(\mu_{3}-H)_{$	ι -PPh ₂) ₃ and	
Re(1) Re(2)	620 (1)	2344 (1) 3392 (1)	2500	42 (1) 42 (1)	$Re_3(CO)_9(\mu$	-PPh ₂) ₃ (Haup	t, Flörke & H	Balsaa, 1988c).	
P(1)	1016 (3)	3271 (2)	1340 (3)	49 (3)	Both (IV) a	nd its Ph deriv	ative are not	t affected by a	
P(2) C(1)	- 820 (12)	1546 (2) 2327 (7)	2500 1232 (9)	48 (3) 51 (10)	change fron	n Cy [av. Re-	-Re 2.916 (2)	Å] to Ph [av.	
0(1)	- 1634 (9)	2306 (5)	898 (6)	72 (8)	Re—Re 2.9	14 (4) Å] resid	ues.		
C(2) O(2)	2107 (12) 2997 (9)	2317 (7) 2277 (5)	2297 (8) 2569 (6)	52 (10) 74 (8)	The Re-	-Re bond all	terations in	this kind of	
C(3)	1302 (13)	1938 (7)	962 (10)	57 (11)	phosphido-ł	pridged compo	and let us co	onclude that a	
O(3) C(4)	1701 (10)	1695 (6) 4184 (9)	472 (7) 2500	88 (10) 58 (15)	renlacement	of Ph against	Cv groupe	affects uncatu	
O(4)	- 4 (27)	4671 (7)	2665 (13)	60 (6)*	rated AA V	F clusters mo	than eat	arated AQ VE	
C(5)	1448 (12)	3423 (6)	3049 (8)	46 (9) 81 (9)	clusters En	rthermore and	he man sall	$a_{1} = \frac{1}{2} + \frac{1}{2$	
0(3)	2290 (10)	J4/8 (J)		01 (7)	VE obseters	of the tree	$\mathbf{P}_{\mathbf{A}}(\mathbf{C}\mathbf{O})$	μ_3 - fi in 44	
- Disordered around twofold axis, s.o.t. = 0.5 . V f						v E clusters of the type $\text{Ke}_3(\text{CO})_6(\mu_3-\text{H})_2(\mu-\text{P}R_2)_3$			

against μ_3 -P, μ_3 -Cl and μ_3 -I atoms, which is accompanied by a conversion of 44 VE to 46 VE cluster species, reveals Re—Re bond elongation in the 46 VE species of about 0.053 (1)–0.094 (1) Å. The electronic structure of the μ_3 -X ligands seems to be a factor of greater influence than the atomic size of X, because in the series of substances of type Re₃(CO)₆(μ_3 -H)(μ_3 -X)(μ -PPh₂)₃ [X: Cl > Br > I, Re—Re 2.808 (1) > 2.809 (2) > 2.820 (1) Å], such a steric factor can almost be neglected. In general, the rather rigid phosphido-bridged Re—Re triangles do not show extensive geometrical changes.

References

- FLÖRKE, U. & HAUPT, H.-J. (1990). Z. Kristallogr. 191, 291-294.
- HAUPT, H.-J., FLÖRKE, U. & BALSAA, P. (1988a). Acta Cryst. C44, 61-63.
- HAUPT, H.-J., FLÖRKE, U. & BALSAA, P. (1988b). Angew. Chem. Int. Ed. Engl. 27, 263-264.
- HAUPT, H.-J., FLÖRKE, U. & BALSAA, P. (1988c). Inorg. Chem. 27, 280–286.
- HAUPT, H.-J., WOYCIECHOWSKI, M. & FLÖRKE, U. (1991). Z. Anorg. Allg. Chem. 592, 153-170.
- LAUHER, J. W. (1978). J. Am. Chem. Soc. 100, 5305-5315.
- SHELDRICK, G. M. (1988). SHELX-Plus88. Structure Determination Software Programs. Nicolet Instrument Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1991). C47, 2535-2539

Structure of *trans*-Aquanitrido(1,4,8,11-tetraazacyclotetradecan-5-onato-N,N',N'',N''')technetium(V) Chloride Dihydrate

By Valerio Bertolasi,* Valeria Ferretti and Paola Gilli

Dipartimento di Chimica e Centro di Strutturistica Diffrattometrica, Università di Ferrara, 44100 Ferrara, Italy

AND ANDREA MARCHI AND LORENZA MARVELLI

Laboratorio di Chimica Nucleare ed Inorganica, Dipartimento di Chimica, Università di Ferrara, 44100 Ferrara, Italy

(Received 19 January 1991; accepted 3 June 1991)

Abstract. $[TcN(C_{10}H_{21}N_4O)(H_2O)]^+.Cl^-.2H_2O, M_r$ = 415.81, monoclinic, $P2_1/c$, a = 7.609(1), b =16.405 (3), c = 13.642 (3) Å, $\beta = 99.57$ (1)°, V =1679.2 (5) Å³, Z = 4, $D_x = 1.64 \text{ Mg m}^{-3}$, λ (Mo K α) = 0.71069 Å, $\mu = 1.018$ mm⁻¹, F(000) = 856, T =298 K, R = 0.021 for 3262 observed reflections. The complex cation displays a distorted octahedral structure, with a water molecule in the trans position with respect to the Tc≡N group and the four N atoms of the ligand in the equatorial position. The degree of pyramidalization of the coordination polyhedron is important [average N≡Tc-N angle of 101 (3)°] and the Tc-OH₂ bond distance is abnormally long (2.560 Å), as a consequence of the strong *trans* influence exerted by the nitrido group. These facts are consistent with an incipient transition from a square pyramidal to octahedral geometry of the coordination polyhedron caused by the incoming water molecule.

Introduction. The application of complexes of metastable technetium-99m in diagnostic nuclear medicine has stimulated a major development of technetium chemistry.

The chemistry of technetium(V) is largely dominated by [Tc=O]³⁺ and trans-dioxo [O=Tc=O]⁺ cores. Throughout this paper the form $[Tc \equiv O]^{3+}$ is used to describe the Tc-oxo multiple bond according to the well known bond situation in oxo complexes where the M—O bond has three components (one σ and two π), out of which two are covalent and one is donor-acceptor (Tc ≤O) (Shustorovich, Porai-Koshits & Buslaev, 1975). This formalism is useful to distinguish the bond situation in oxo [Tc≡O]³⁺ complexes, where Tc−O distances fall in the range 1.61–1.68 Å with stretching frequencies in the range 920–1020 cm⁻¹, from that in dioxo $[O=Tc=O]^+$ complexes where the distances and stretching frequencies occur in the ranges 1.74-1.75 Å and 790-880 cm⁻¹ respectively (Zuckman, Freeman, Troutner, Volkert, Holmes, Van Derveer & Kent Barefield, 1981; Kastner, Lindsay & Clarke, 1982; Jurisson, Aston, Fair, Schlemper, Sharp & Troutner, 1987).

Lipophilic square-pyramidal complexes containing the $[Tc==O]^{3+}$ moiety as [TcO(L)] (L = diamino-

© 1991 International Union of Crystallography

^{*} To whom correspondence should be addressed.